
IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55108 461

Computing Shortest Path for Graph Using FEM

Framework

Piyush Kulkarni
1
, Kapil Vyas

2

PG Student, Computer Science and Engineering, BM College of Technology, Indore (MP), India1

Assistant Professor, Computer Science and Engineering, BM College of Technology, Indore (MP), India2

Abstract: This paper focus on computing shortest path as finding the distance between two vertices in graph or tree.

Graph data can use in many domains like a social network and in knowledge graph. This graph search includes sub-

graph. The problem of finding the shortest path between two nodes can be solved using the salesman traveling path,

minimal spanning tree, and the likewise. The problem occurred with the graph based searching when a graph is too big

to fit in memory and for that, it uses the external memory. The disk-based method has some limitations when graph

exceeds its size. In this paper, we are analyzing the shortest path for efficient relational approaches to graph search

queries. For this, we use three relational operator based-on which we introduce the framework for bridge the gap

between graph operation and relational operator. We show the new feature of SQL such as merge statement and

windows function to improve the performance of FEM framework. To avoid extra indexing overhead and improve

scalability and performance, we propose an edge weight aware graph partitioned schema and design bi-directional

restrictive BFS (breadth-first-search). The final experimental results illustrate our relational approach with optimization
strategies can achieve high performance and scalability.

Keyword: graph, shortest path, Relational database, graph search queries, graph indexing.

I. INTRODUCTION

Today’s world growth of graph increases rapidly, graph

search faces more challenges. Graph search is more

common in graph applications. Graph search purse for a

specific purpose such as shortest path between two nodes,

minimum spanning tree etc. As a size of graph increases, it

does not fit into main memory so existing approaches to
graph search must be reexamined. On external disk

memory, I/O is the key factor for graph operations. As

graph size increases, existing disk-based methods provide

limited support for graph based quires. Neo4J is one who

can a store large graph in a database and provide operation

such as shortest path discover to end users and graph

traversal. The performance of graph based systems should

be continuously improved, as graph database systems have

to implements complex component including query

evaluation, query optimization, storage etc. MapReduce

framework and its open source implementation Hadoop

can process large graph stored on distributed file system.

Relation database (RDB) provides support for graph

search. RDB plays a key role in information systems. RDB

and graph database management have many same
functionalities such as storage, optimization etc. RDB also

managing a complex database like XML data. RDB can

support graph queries such as BFS and reachability query

.The extension of RDB to graph search queries is useful

when both graph and relational operation are needed. It

requires a substantial effort to support graph search query

in RDB context. First, queries of graph search are various

forms. It is not possible to implement each query. We need

to find a mechanism for evaluation of graph search in

relational context. Second, there is a symbolic mismatch

between relational operations and graph

operation which effects on graph search. Graph operation

follows node-at-time fashion whereas relational operations

follow set-at-time fashion. This paper focuses on shortest

path discovery for two reasons. First, search the shortest

path that provides a key role in many applications like

reveal relationship between two individual in a social

network. Second it represents query which has similar

evaluation pattern like other search queries.

II. PROPOSED SYSTEM

In a graph, various types of algorithm are present for the

finding the shortest path such as best first search, breadth

first search, Dijkstra’s algorithm. Dijkstra’s algorithm and

bidirectional restrictive BFS algorithm is used to find the

shortest path with the help of FEM framework using a

relational database.

Fig -1: System Architecture

The system mainly divided into following parts

Query processing
We use two SQL feature window function and merge

statement which is supported by many database systems

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55108 462

like oracle, SQL server. Window function returns an

aggregate of each tuple in a set. The merge statement adds

new tuples and update existing one in a table from a

source table.

FEM Framework

To find the shortest path between a source node and

targeted node, we use Dijkstra’s algorithm. There are

three basic operations in graph search select, expand and

merge respectively. In this, we first initialize a table with

source node then start iteration to find the shortest path
between a source node and targeted node. We locate

frontier node and perform expansion and merge newly

expanded node into visited nodes.

Bidirectional Restrictive BFS

Bidirectional allows forward expansion and backward

expansion. In bidirectional restrictive BFS, we allow

multiple a node be frontier node and search from this

frontier node along their partial incident edge first. The

expansion can be done in set-at-a-time fashion and visited

node to be re-expanded as compared to BFS. We also use
partitioning table strategy to handle large graphs.

ALGORITHMS

For finding the shortest path, we used two algorithms.

1) Dijkstra’s algorithm for shortest path discovery

2) Bi-Directional Restrictive BFS on Partitioned Tables

The Dijkstra’s algorithm for shortest path discovery as

follow
Input: Source node s, target node t, Graph G= (V, E)

Output: Shortest path between s and t.

1) Initiaze all visited node

2) While true do

3) Locate mid value , ID for next frontier node using

SQL

4) Expand path using query operator in SQL with mid

value

5) When tuples is Zero then break

6) Finalize frontier node where identifier= mid value

7) If result exists then break
8) Find edges in shortest path along with preprocessor

source node

9) Return the shortest path

The Bi-Directional Restrictive BFS on Partitioned Tables

as follow

Input: source node s, target node t .partitioned tables

Output: shortest path between s and t

1) Initialize TAf with node s and TAb with node t

2) minCost assume infinity

3)
4) While li

f +lj
b<= minCost do

5) ifnf<= nb then

6) Expand the path
7) nf = no. of affected tuples

8) Compute li
f using minimum distance in forward

searching

9) I i+1Else

10) Similar action from line 7 to 10 for backward

expansion

11) Locate minimum distance

12) Make verification of minimum distance

13) Compute minimum distance.

14) Locate node in shortest path nid

15) Find sub-path sp0 from s to nid

16) Find sub-path sp1 from nid to t

17) Return sp0+sp1;

MATHEMATICAL MODEL

The complete system S can be represented in terms of

input, output and functions.

S = {I, O, F}

I = Set of inputs

O = Set of output

F = Set of functions

I= {I1, I2}
I1 = Graph

I2 = User Query

O = {O1, O2, O3}
O1 = Shortest path between two node

O2 = Average time cost

F = {F1, F2, F3, F4, F5, F6, F7, F8, F9 }

F1 = Graph generation

F2 = Query Analysis

F3 = Type Identification

F4 = Query preparation

F5 = SQL in Path Finding

F6 = Query Expansion

F7 = Distance Calculation

F8 = Dijkstra’s algorithm

F9 = Bi-directional Restrictive BFS

III. EXPERIMENTAL RESULT

Dijkstra's Algorithm start at source node S, span all node

reachable from S, then next closest node and so on. When

FEM framework is used along with it, one node will be

selected as a frontier node and search in one direction. In

restrictive BFS, we allow multiple nodes be frontier node

and search from this frontier node. WE find a path using a

window function and merge statement and traditional

function such as aggregate and insert/update. The result

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55108 463

shows that the system performance increases with a

window function and merge statement. When we using

FEM framework, time requires for finding shortest path is

decreased.

Chart 1: Time Cost analysis for with and without FEM

Framework

Chart 2: Time vs SQL Query

We can also see our bi-directional restrictive BFS on

weight aware partition edge table consume more time than

Dijkstra’s algorithm.

Chart 3:Time comparison between Dijkstra’s and Bi-

directional Restrictive BFS

IV. CONCLUSIONS

This paper proposes FEM framework to find a short path

between a source node and targeted node. It also

introduces new SQL feature such as merge statement and

windows function to improve the performance of FEM

framework. The bidirectional restrictive search and graph
table is partitioned improves the scalability and

performance of FEM Framework. The proposed system

requires less execution time and gives a better result than

bidirectional search.

REFERENCES

[1]. B. Bahmani, K. Chakrabarti, and D. Xin, “Fast Personalized

Pagerank on Mapreduce,” Proc. ACM SIGMOD Int’l Conf.

Management of Data (SIGMOD ’11), pp. 973-984, 2011.

[2]. S. Trißl and U. Leser, “Fast and Practical Indexing and Querying of

Very Large Graphs,” Proc. ACM SIGMOD Int’l Conf.

Management of Data (SIGMOD’07), pp. 845-856, 2007.

[3]. S. Srihari, S. Chandrashekar, and S. Parthasarathy, “A Framework

for SQL-Based Mining of Large Graphs on Relational Databases,”

Proc. 14th Pacific-Asia Conf. Advances in Knowledge Discovery

and Data Mining—Volume Part II (PAKDD’10), pp. 160-167,

2010.

[4]. B. Zou, X. Ma, B. Kemme, G. Newton, and D. Precup, “Data

Mining Using Relational Database Management Systems,” Proc.

10th Pacific-Asia Conf. Advances in Knowledge Discovery and

Data Mining (’06), pp. 657-667, 2006.

[5]. M. Potamias, F. Bonchi, C. Castillo, and A. Gionis, “Fast Shortest

Path Distance Estimation in Large Networks,” Proc. Int’l Conf.

Information and Knowledge Management (CIKM’09), pp. 453-470,

2009.

[6]. F. Tian, B. Reinwald, H. Pirahesh, T. Mayr, and J. Myllymaki,

“Implementing a Scalable XML Publish/Subscribe System Using a

Relational Database System,” Proc. ACM SIGMOD Int’l Conf.

Management of Data (SIGMOD ’04), pp. 479-490, 2004.

[7]. D. Wagner and T. Willhalm, “Speed-Up Techniques for Shortest-

Path Computations,” Proc. 24th Ann. Conf. Theoretical Aspects of

Computer Science (STACS ’07), pp. 23-36, 2007.

[8]. J. Dean and S. Ghemawat, “Mapreduce: Simplified Data Processing

on Large Clusters,” Proc. Sixth Symp. Operating System Design

and Implementation (OSDI’04), pp. 137-150, 2004.

[9]. E. Dijkstra, “A Note on Two Problems in Connexion with Graphs,”

NumerischeMathematik, vol. 1, pp. 269-271, 1959.

[10]. E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, “Reachability and

Distance Queries via 2-Hop Labels,” Proc. 13th Ann. ACMSIAM

Symp.Discrete Algorithms (SODA ’02), pp. 937-946, 2002.

[11]. D. Hutchinson, A. Maheshwari, and N. Zeh, “An External Memory

Data Structure for Shortest Path Queries,” Discrete Applied Math.,

vol. 126, pp. 55-82, no. 1, 2003.

[12]. C. Wang, W. Wang, J. Pei, Y. Zhu, and B. Shi, “Scalable Mining of

Large Disk-Based Graph Databases,” Proc. 10th ACM Int’l Conf.

Knowledge Discovery and Data Mining (SIGKDD ’04), pp. 316-

325, 2004.

[13]. Goldberg and C. Harrelson, “Computing the Shortest Path: Search

Meets Graph Theory,” Proc. 16th Ann. ACM-SIAM Symp.

Discrete Algorithms (SODA ’05), pp. 156-165, 2005.

[14]. C. Aggarwal, Y. Xie, and P. Yu, “GConnect: A Connectivity Index

for Massive Disk-Resident Graphs,” Proc. VLDB Endowment, vol.

2, no. 1, pp. 862-873, 2009.

[15]. C. Mayfield, J. Neville, and S. Prabhakar, “ERACER: a Database

Approach for Statistical Inference and Data Cleaning,” Proc. ACM

SIGMOD Int’l Conf. Management of Data (SIMGMOD ’10), pp.

75- 86, 2010.

